Your browser doesn't support javascript.
Show: 20 | 50 | 100
Results 1 - 7 de 7
Filter
1.
Dtsch Med Wochenschr ; 148(9): 528-538, 2023 Apr.
Article in German | MEDLINE | ID: covidwho-2294709

ABSTRACT

Malignant tumor diseases constitute the 2nd most common cause of death and due to our extended life expectancy cancer per se has substantially increased, being highly prevalent after cardiovascular diseases. Evidence also generated from the COVID-19 pandemic, that defined gender differences exist in symptom and disease courses, and have advocated the need to assess gender, ethnic/racial and minority differences in cancer care and treatment more meticulously. It is becoming increasingly evident that in novel cancer care/precision oncology, representation of minorities, elderly and frail patients in clinical trials remains largely unbalanced, thus distribution of cancer success is iniquitous. This article focusses on these aspects and suggests solutions, how this can be improved.


Subject(s)
COVID-19 , Neoplasms , Humans , Aged , Neoplasms/therapy , Precision Medicine , Economic Status , Pandemics , Genetic Background
2.
Genome Biol ; 24(1): 47, 2023 03 13.
Article in English | MEDLINE | ID: covidwho-2260859

ABSTRACT

BACKGROUND: The mutational landscape of SARS-CoV-2 varies at the dominant viral genome sequence and minor genomic variant population. During the COVID-19 pandemic, an early substitution in the genome was the D614G change in the spike protein, associated with an increase in transmissibility. Genomes with D614G are accompanied by a P323L substitution in the viral polymerase (NSP12). However, P323L is not thought to be under strong selective pressure. RESULTS: Investigation of P323L/D614G substitutions in the population shows rapid emergence during the containment phase and early surge phase during the first wave. These substitutions emerge from minor genomic variants which become dominant viral genome sequence. This is investigated in vivo and in vitro using SARS-CoV-2 with P323 and D614 in the dominant genome sequence and L323 and G614 in the minor variant population. During infection, there is rapid selection of L323 into the dominant viral genome sequence but not G614. Reverse genetics is used to create two viruses (either P323 or L323) with the same genetic background. L323 shows greater abundance of viral RNA and proteins and a smaller plaque morphology than P323. CONCLUSIONS: These data suggest that P323L is an important contribution in the emergence of variants with transmission advantages. Sequence analysis of viral populations suggests it may be possible to predict the emergence of a new variant based on tracking the frequency of minor variant genomes. The ability to predict an emerging variant of SARS-CoV-2 in the global landscape may aid in the evaluation of medical countermeasures and non-pharmaceutical interventions.


Subject(s)
COVID-19 , SARS-CoV-2 , Humans , SARS-CoV-2/genetics , Pandemics , Genetic Background , Genome, Viral , Mutation
3.
PLoS Pathog ; 18(7): e1010631, 2022 07.
Article in English | MEDLINE | ID: covidwho-1933392

ABSTRACT

The S:A222V point mutation, within the G clade, was characteristic of the 20E (EU1) SARS-CoV-2 variant identified in Spain in early summer 2020. This mutation has since reappeared in the Delta subvariant AY.4.2, raising questions about its specific effect on viral infection. We report combined serological, functional, structural and computational studies characterizing the impact of this mutation. Our results reveal that S:A222V promotes an increased RBD opening and slightly increases ACE2 binding as compared to the parent S:D614G clade. Finally, S:A222V does not reduce sera neutralization capacity, suggesting it does not affect vaccine effectiveness.


Subject(s)
COVID-19 , SARS-CoV-2 , Angiotensin-Converting Enzyme 2/genetics , COVID-19/genetics , Genetic Background , Humans , Mutation , Peptidyl-Dipeptidase A/metabolism , Protein Binding , Receptors, Virus/metabolism , SARS-CoV-2/genetics , Spike Glycoprotein, Coronavirus/metabolism
4.
Sci Rep ; 12(1): 5424, 2022 03 31.
Article in English | MEDLINE | ID: covidwho-1768856

ABSTRACT

The development of mouse models of human disease and synthetic biology research by targeted transgenesis of large DNA constructs represent a significant genetic engineering hurdle. We developed an efficient, precise, single-copy integration of large transgenes directly into zygotes using multiple mouse genetic backgrounds. We used in vivo Bxb1 mediated recombinase-mediated cassette exchange (RMCE) with a transgene "landing pad" composed of dual heterologous Bxb1 attachment (att) sites in cis, within the Gt(ROSA)26Sor safe harbor locus. RMCE of donor was achieved by microinjection of vector DNA carrying cognate attachment sites flanking the donor transgene with Bxb1-integrase mRNA. This approach achieves perfect vector-free integration of donor constructs at efficiencies > 40% with up to ~ 43 kb transgenes. Coupled with a nanopore-based Cas9-targeted sequencing (nCATS), complete verification of precise insertion sequence was achieved. As a proof-of-concept we describe the development of C57BL/6J and NSG Krt18-ACE2 models for SARS-CoV2 research with verified heterozygous N1 animals within ~ 4 months. Additionally, we created a series of mice with diverse backgrounds carrying a single att site including FVB/NJ, PWK/PhJ, NOD/ShiLtJ, CAST/EiJ and DBA/2J allowing for rapid transgene insertion. Combined, this system enables predictable, rapid development with simplified characterization of precisely targeted transgenic animals across multiple genetic backgrounds.


Subject(s)
Bacteriophages , COVID-19 , Animals , Bacteriophages/genetics , DNA , Gene Transfer Techniques , Genetic Background , Integrases/genetics , Mice , Mice, Inbred C57BL , Mice, Inbred DBA , Mice, Inbred NOD , RNA, Viral , SARS-CoV-2
7.
ACS Chem Neurosci ; 11(24): 3996-4000, 2020 12 16.
Article in English | MEDLINE | ID: covidwho-943849

ABSTRACT

To provide solid information about viral infection, disease, and body iron metabolism, the literature was surveyed for mutual correlations. Gender and age profiles of COVID-19 infection and disease correlate well with the profiles of serum iron and ferritin with correlation coefficients ≥ 0.75. There are further symptomatic hints that the ABO blood group system contributes to these correlations. Remarkably, the susceptibility to both the viral disease and iron dyshomeostasis can be traced back to the same gene loci of the ABO blood group system. The overlapping of susceptible gene loci together with the phenomenological correlations in gender and age are strong indicators for the interrelation of body iron dyshomeostasis with COVID-19 infection and disease.


Subject(s)
COVID-19/virology , Iron/metabolism , SARS-CoV-2/pathogenicity , Surveys and Questionnaires , Adult , Female , Ferritins/metabolism , Genetic Background , Humans , Male
SELECTION OF CITATIONS
SEARCH DETAIL